

Presentation Overview

Terminology and Options Overview

Field/Zone Layout Considerations/Trade-offs

Hydraulic Design Factors

Flow, Head, Pump Selection Dosing/Flushing Regimes

Hydraulic Measurements

Start-up
Ongoing for Performance Verificatio

Terminology

Fields

- Separately Dosed Drainfield Areas
- Unique Supply and Return Lines

Zones

- Common Supply/Return Manifolds (Single control valve per zone)
- Dosed individually or in Multiples (e.g., 2 or 3); Flushed Individually

Runs (on-contour); Laterals (one or more runs)

• Lateral Between Supply and Return Manifold.

Manifold Options

- Opposite Side or Same Side of Zone
- Side-Feeding or Top Feeding (lateral connection implications)

Dripline and Emitter Options

- Size and Spacing
- Emitter (gallons per hour; spacing along dripline)

Two Fields (Initial and Repair Areas Shown)

Zone Configuration/Options

Drip Emitters

Emitter Options: 0.4; 0.6; 0.9 gph

Emitter Options: 0.6; 0.9 gph

Emitter Options: 0.4; 0.6; 1.0 gph

Pressure-Compensating Emitters

Dripline Pressure, psi

Manifold-to-Lateral Connections

Layout Considerations

Objectives

- Follow Contour
- "Paint" the Drainfield Area
- Optimize/Respect Site Conveyance Capacity
- Integrate Active/Repair Zones

Trade-Offs

- Long Laterals On-Contour
- Multiple Zones
- Opposite vs Same-Side Manifolds

Mobile Home Park System (9000 gpd)

7 Zones

9000 gpd/0.3 LTAR

15-20% Slope

Top-Feed/Same Side Manifolds

2384 LF/Zone

8 Laterals/16 Runs/Lat

Laterals 298' Each (1 Loop)

RV Park System (Phase I 5845 gpd)

6 Zones

5845 gpd/0.3 LTAR

15% Slope

Top-Feed/Opposite Side

3208-3500 LF/Zone

11-17 Laterals/Zone

Laterals 188-312 LF

White Stone, VA (40,000 gpd Drip Field)

8 Zones

0.3 LTAR

Top-Feed/Same Side

3 SubZones/Zone

9 Laterals/SubZone

Laterals 300 LF

Mountain Townhome System (2880 gpd)

Hydraulic Design Steps

- Field Network Layout
 - Number/location of Zones
 - Number/size/length of Laterals, Supply,
 Return
 - Number/specifications for Emitters
- Compute/Select Flow Parameters
- Compute TDH/Pump Selection
- Specify Pumping/Operating Regime

Hydraulic Design Considerations

General

- Flow Requirements (Dosing/Flushing/Filter Backwash)
- Total Dynamic Head (TDH) Requirements
- Pump Selection
- Pump Operating Regime ("Normal"; "Peak"; Flushing)

Dosing

- Flow = # emitters/zone x # zones dosed (1 or more) x gph/emitter
- TDH = HWL + EH+ SL + Longest Lat FH + PH

Flushing

- Flow/lateral function of design min Scour Velocity (1-3 fps), Lateral Dia.
- Flow = Dosing Flow + SVF x # Laterals/Zone
 - Increment to achieve min SV when Lateral Lengths are variable
- TDH = HWL + EH+ SL + Network HL + PH
 - Add RL if net loss (EH + Friction) > 10 psi

Compute/Select Flows

Dosing Flow

- Number of emitters/zone x gph/emitter
- Dose single or multiple zones?

□ Flushing Flow (rec. 1.5 - 3 fps/lateral, min)

- Scour velocity flow x number of laterals plus dosing flow
- □ Use DRIPNET (esp. for non-uniform layouts)

Filter Backwash Flow

- Filter-Dependent
- Use Manufacturer's Worksheets

Too Low Flushing Velocity (Anaerobic Drip)

Determine Total Dynamic Head (TDH)

- Dosing (at dosing flow rate)
 - □ HWL + EH + SL + Longest Lat FH + PH
 - □ Is Max-Field Pressure ≤ emitter man. recs?
- Flushing (at flushing flow rate)
 - □ HWL + EH + SL + Network HL + PH
 - □ Check Return Net HL (add only if > 10 psi)
 - Use DRIPNET for Network Loss
- Filter Backwash (at design flow rate)
 - Filter-Dependent

Compute Lateral Head Loss

- Drip line diameter
- Emitter spacing
- Dosing Head loss
- Flushing Head loss

Head Loss Along Drip Lateral

Friction Loss Along Lateral (2 ft/s flushing)

Friction Loss Along Lateral (2 ft/s flushing)

Increment Flushing Flows When Lateral Lengths Vary to Achieve Desired Minimum

Computer Program DRIPNET

Pump Selection

Check Maximum Field Operating Pressure

- Start with Pump Pressure at Dosing Flow
 - Determine from Pump Curve
 - Subtract Dosing TDH
 - Add net field EH (top of Zone to lowest lateral)
- □ Is it> Emitter Man. Recommendations (e.g., 50-60 psi)?
 - If "Yes", use Pressure Sustaining Valve (inlet to Zone)
 - Recheck if min. Flushing Flow Rate Sustainable

Peak Pressure Calculation

Peak Pressure =

- Pump Operating Head (dosing)

 (minus)
- Dosing TDH (plus)
- Field Elevation Drop (FED)

Peak Pressure =

- 220 87 = 133 Ft + FED
- = 58 psi (+ FED)

Pump Operating Regimes

General

- "Normal" Dosing
- "Peak" Dosing
- Field Flushing
- Filter Backwash

Dosing Parameters

- Equalize over 24-hours (a given)
- Trade-Offs:
 - "Micro" Dosing (many small doses throughout day, short run times)
 - Min. Volume needed for Distribution Uniformity
- Dose Control Options: Time vs Volume
- Coordinate Dose Control with Level Sensor Indicators

Dosing a Drip Field Zone

- Four stages of Dosing
 - Pressurization flow
 - Pressurized (uniform)flow
 - Depressurizing (draindown) flow
 - Resting

PC Emitter Flow During Pressurization

Buchanan, 2006: Non-Uniformity During Pressurization

Drainback: Volume Draining Non-Uniformly in Drip Laterals and Supply Manifolds at End of Dose

NC Example:

Drainback: Volume Draining Non-Uniformaly in Drip Laterals and Supply Manifolds at End of Dose

NC Example:												
Field Zone	Laterals	Supply Manifold	Total Network Pipe									
_		(gallons)										
1	143	67	210									
2	144	138	282									
3	144	237	381									
4	144	117	260									

Minimum Equalized Dose Volume to Meet 80% Delivery Criteria to Each Zone: 1100

Average Doses per Zone Per Day, at Design Daily Flow Rate: 3

Minimum Dose Time and Volume Measurement

- □ Goal: >80% of Dose When Pressurized
 - With system "dry", turn on, measure Time (PTi)
 and Volume (FGi) till pressurized
 - (>10 psi at top of return)
 - Calculate Minimum Pressurized Dose Time
 - = (4xFGi)/(Steady-State Dosing Flow Rate)= STi
 - □ Adjusted Minimum Dose Time = PTi + STi
 - □ Minimum Dose Volume = 5 x FGi

Option to Reduce Dose Time and Still Meet Minimum Dose Volume Criteria

- Use 18-inch vs 24-inch emitter spacing
 - □ Same Dose Volume Delivered over 25% shorter run-time
 - Also Reduces per/emitter application rate(a plus for clayee soils).
- Requires Higher Dose and Flushing Flow Rates
 - Results in higher lateral friction loss (e.g., during flushing)

Coordinate Controls With Level Sensors

Flushing Operating Parameters

General

- Scour Velocity Selected (controls flow and TDH)
- Aerobic vs Anaerobic
- Automated Controls (by activating normally closed flush valve on return line).
- Return directed to pretreatment system

Frequency

- Once per (X) dose cycles (e.g., 15-30?).
- Once per (X) days (e.g., 14-28?)

Duration

• Network Pressurization + 2 x longest lateral detention time

Hydraulic Performance Issues

- Change in Emitter Flow Rate
 - Reduction or Increase with Time?
- Reduction in Emitter Flow Uniformity
- Increase in Field Head Loss
 - Especially during flushing
- Valve "Issues"

Field Measurements

- Dosing Flow Rate
- Flushing Flow Rate
- Flushing Head Loss(Outlet Inlet Pressure)

Start-Up Measurements

Queens Grant Start-up Measurements and DRIPNET Prediction Comparisons, 06/25/12													
Zone	Dosing		Flushing		Emitter Flow		Min Flush	Predicted vs					
					(0.90 gph		Scour Vel.	Measured Head					
					design)		(ft/sec)**	Loss (psi)					
	Flow	Pressure	s (psi)	Flow Pressures (psi)		Meas.	%		Pred.	Mea.(mea.			
	(gpm)*	Supply	Return	(gpm)*	Supply	Return	(gph)	Design		***	ys.pred,%)		
5	16	47	41	33	36	9	.83	92%	2.5	42	27 (65%)		
6	17	48	43	33	36	9	.88	98%	2.4	42	27 (65%)		
7	17	47	42	31	30	8	.88	98%	2.1	36	22 (62%)		
8	17	45	42	31	31.5	8.5	.88	98%	2.1	23	22 (65%)		

Measured Zone Dosing Rate (Troubleshooting)

Anaerobic Drip (Performance Reduction)

- Emitter Flow (gph)
- -+- Flushing Velocity (ft/s)

Jan- Jan- Jan- Jan- Jan- 93 95 97 99 01 03

Increased Field Head Loss (Flushing)

Decreased Flushing Scour Velocity

Emitter Plugging

Non-Uniform Distrib.

Reduction in Emitter Flow Rate

Reduced Distribution Uniformity

Key Take-Aways

- Optimize Drip's Unique Landscape Effluent Dispersal Advantages
- Respect Soil/Site Limitations
- Integrate Active/Repair Zones
- K.I.S.S. Maximizes Operability and Performance Assessment
- Even # of Zones
- Equal Lateral Length/Zone
- Iterative Design Decisions
- Layout Options/Zone Number/Size
- Resultant Dosing/Flushing Operating Regimes
- Maximize Steady-State portion of dose volume
- Monitor Hydraulic Parameters to assure long-term performance

NOWRA Contact Information:

Thomas W. Groves (Tom), Executive Director
P.O. Box 982
Westford, MA 01886

(phone) 978.496.1800 (fax) 703.997.5609

www.nowra.org

executivedirector@nowra.org info@nowra.org

