2024 Onsite Wastewater Mega-Conference

Evaluation of a Potential Pressure Drop Estimation Tool Hydraulic Properties of Drip Tubing

John R. Buchanan, Ph.D., P.E.

Professor and Extension Specialist Water and Wastewater Engineering

Biosystems Engineering and Soil Science Department

Evaluation of a Potential Pressure Drop Estimation Tool

- Determining the pressure-drop due to pipe friction is not a straight-forward task
	- not a single outlet pipe
		- it is a lateral with multiple outlets
		- velocity (flow) changes along length

Traditional Method

- For dripline
	- we use the manufacturer's design guide for determining the maximum tubing length that maintains minimum pressure requirement at distal end
		- during dose, zero flow at distal end
		- during flush, flow that provides velocity of 2 fps

For Example, a 2-fps Flush

Wastewater Reuse and Drip Dispersal Design Guide Wastewater Division, Netafim. www.netafimuse.com

Real, Life, Solutions."

Dose, No Flush

Wastewater Reuse and Drip Dispersal Design Guide Wastewater Division, Netafim. www.netafimuse.com

On Level Ground….

- Using 24-inch spacing and 0.6 gph emitters – maximum length is 449 feet if a 45-psi inlet pressure is provided
	- total flow is 3.81 gpm
		- 224 emitters 2.28 gpm
		- 0.56-in diameter $-$ 1.53 gpm for 2 fps

As an Engineer…..

- I am given the maximums
	- and left to assume that shorter lengths should work fine
- But I don't work in flat country
	- elevation changes are part of the equation
	- individual laterals on contour, but inlet pressures

The Real Problem…

- Parallel pipes
	- I need to know the pressure drop across each lateral to ensure the flush velocity

Engineering of Laterals

- Sprinkler irrigation
	- sprayers are not pressure compensated
	- must minimize head loss so sprayers are equal

Pressure Compensated

- So much easier to design a lateral
	- allows same diameter pipe to be used along length
	- upper limit to length is inlet and distal pressures
		- cannot over pressurize near-end.
		- must have manufacturer's minimum to operate last emitter

Thus….

- It is desirable to have an algorithm to estimate the head loss due to friction along a drip lateral
- Need pressure to return flush to primary

Major Head Loss

- Pipe friction, function of pipe material
	- Hazen-Williams Equation
	- empirical, commonly used
	- C-factor describes material, 150 for plastic

$$
Hf_{major} = 10.44 \left(\frac{Q}{C}\right)^{1.852} L d^{-4.866}
$$

Back to Original Problem

- Equation is for single-outlet pipe
	- acceptable solution
		- break the pipe into a section per outlet
		- use new flow rate per section
		- sum friction calculated for each of the sections
	- 300 feet of pipe, that's 150 sections
		- Holy Sh*t

Chill Out – Use a Spreadsheet

Question

- Can C-factor incorporate the friction due to the embedded emitter bodies?
- On a theorical basis \rightarrow No
	- Hazen Williams is a surface effect model
	- emitters cause regionalized changes in velocity

Minor Head Loss

- Pipe fittings
	- additional turbulence
	- changes in cross-sectional area
- Two methods
	- equivalent lengths of pipe
	- velocity head method

Velocity Head Method

$$
Hf_{minor} = K\frac{V^2}{2g}
$$

 $v =$ velocity in small section $K = coefficient$

For larger sizes, values for 300-mm valve may be used.

Flow Cross-Section at Emitter

- Tubing cross-section -0.25 in²
- Emitter cross-section -0.109 in²
- Difference
	- $-$ 0.141 in²

Quesstimating the K-coefficient

- Assuming a gate valve
	- $d/D = 0.44$
	- starting point
		- $K \approx 0.16$ to 3

For larger sizes, values for 300-mm valve may be used.

Model

Total Head Loss per section = 10.44
$$
\left(\frac{Q}{C}\right)^{1.852}
$$
 L d^{-4.866} + $K\frac{V^2}{2g}$

$$
\sum_{1}^{n} (major loss + minor loss)
$$

• where

n = number of pipe sections

- For each section
	- different flow
	- different velocity
		- in tubing
		- along emitter

Spreadsheet

- Built to allow easy changes for
	- C , K, Q, L
	- cross-sections
	- inlet pressure
- Results compared to Manufacturer's Design Manual

Assumption!

- The manufacturer's allowable length is based on having 7 psi available at distal end
	- difference between inlet pressure and 7 psi is the pressure drop due to pipe friction
		- \cdot 45 psi 7 psi = 38 psi
		- friction for 449 feet, $Q = 3.81$ gpm, 24-in spacing, 0.6 gph emitters
			- per manufacturer's Design Guide

After Some Adjustments: K = 0.25

Pressure Drop along Length due to Friction

So, Yeah….

- I can make a model work for one set of data – how does it perform for other data sets?
- For shorter lengths,
	- it seems to over predict head loss

Major and Minor Losses Along Length

Thinking About the Model

- Overpredicts pressure loss with shorter lengths
	- could increase C-factor to 160
		- the research literature provides some precedence for polyethylene pipe being "smoother than smooth"
		- investigate "sudden contraction & sudden enlargement" as a minor loss model

Thinking About the Model

- Overpredicts pressure loss with shorter lengths
	- Darcy-Weisbach may be a better major loss model
		- still have to determine a friction-factor
		- iterative process
			- nobody has time to do that

Next Steps

- Collect real data
	- hoped to accomplish before this meeting
- Pressure transducers
	- every 50 feet
	- can control flow and pressure input
	- can measure flush flow

Real Life Solutions"

Disclosure and Acknowledgements

- Mention of Brand Names is not an endorsement by the University of Tennessee
- Funding for this project was/is provided by the Tennessee Extension Service
- Tubing provided by
	- David Morgan, Geoflow
	- Glenn Marcum, Ecostruct Group, LLC

Questions

UTEXTENSION **INSTITUTE OF AGRICULTURE** THE UNIVERSITY OF TENNESSEE

Real Life Solutions"