

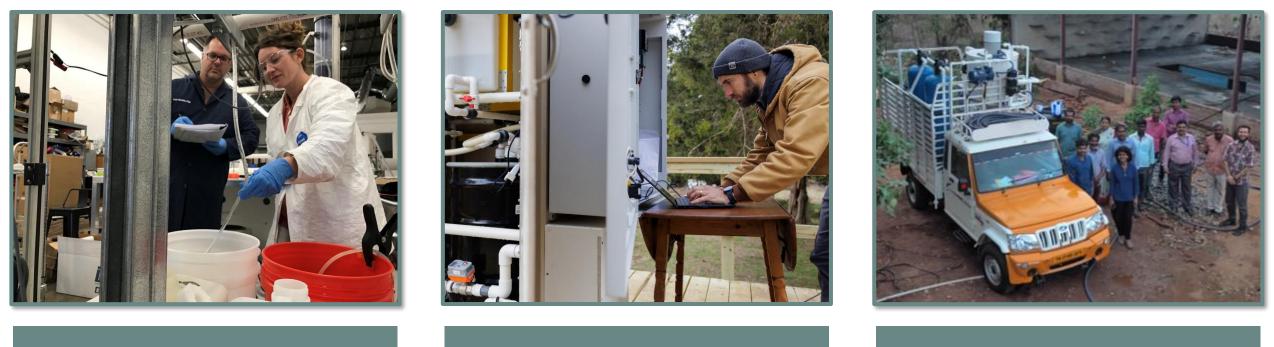
Onsite treatment and water reuse systems in climate-threatened coastal regions

Aaron Forbis-Stokes, Ph.D. aaron@triangle-environmental.com

> 105 Hood Street, Suite 3, Durham, NC 27701, USA

www.triangle-environmental.com Est. 2016

The materials being presented represent our own opinions, and do NOT reflect the opinions of NOWRA.



Our Background

- Founded in 2016
- **Mission:** Develop improved water and sanitation technologies with a focus on the environment and underserved communities
- Supported design, testing, and implementation of over 20+ prototypes in 12 countries.
- Currently developing 3 circular economy products for US onsite wastewater funded by the US EPA

What We Do

Consulting

Early-stage R&D

Field Testing

Product Refinement

Internal Product Development

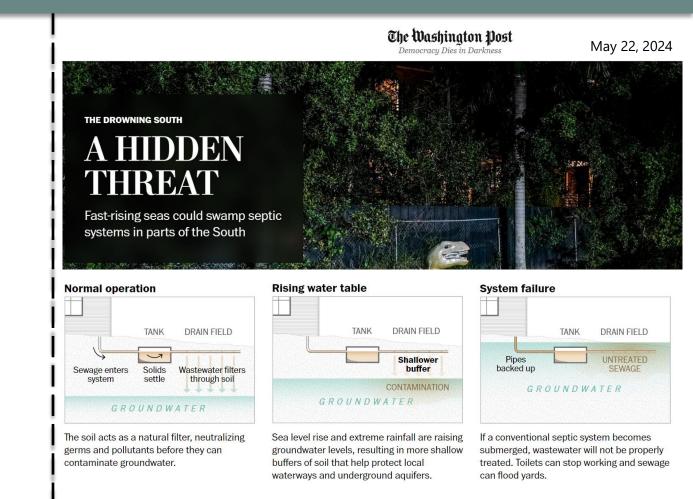
BACKGROUND

Recent Articles

EQ The Washington Post

Sign in

CLIMATE & ENVIRONMENT


Backed-up pipes, stinky yards: Climate change is wrecking septic tanks April 12, 2022

유 10 min 🏟 🎵 🗆

This trench was dug to help alleviate rainwater issues in the yard of Roosevelt Jones, whose septic system has increasingly failed at his Suffolk, Va., home. (Kristen Zeis for The Washington Post)

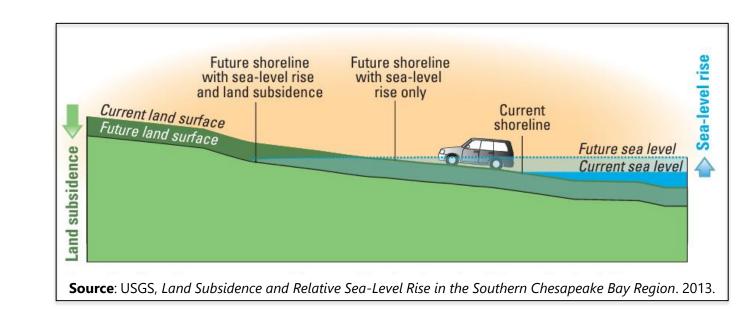
"...septic repair capital of the East Coast...And it's only going to get worse."

"120,000 septic systems remain in Miami-Dade County ... about half are at risk during severe storms or particularly wet years"

Atlantic Coastal Challenges – Relative Sea-Level Rise

Vertical Land Motion NH Bostor New Haven, CT PA rovidence, R OH New York, NY 40° N Atlantic City, NJ wv ewes, DE VA Norfolk, VA NC Atlantic Ocean SC Wilmington, NC Charleston, SC GA Savannah, GA acksonville, FL 30° N mm/year 0 Aiami, F -6 400 km 70° W 80°W Longitude

PNAS Nexus, 2024, 3, 1–14

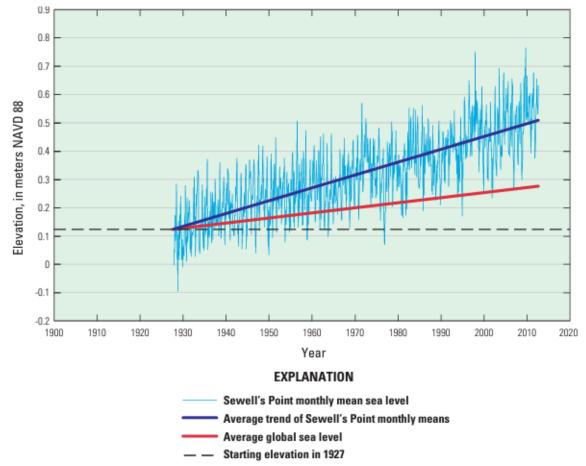

https://doi.org/10.1093/pnasnexus/pgad426 Advance access publication 2 January 2024 Research Report

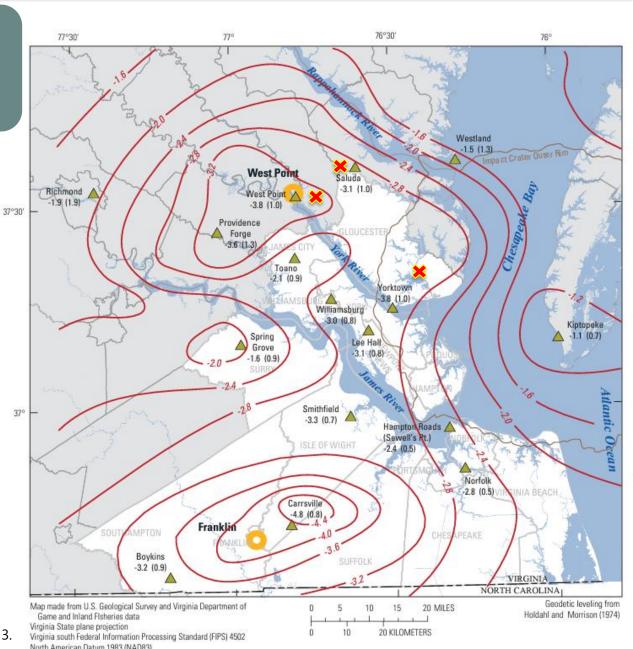
Slowly but surely: Exposure of communities and infrastructure to subsidence on the US east coast

Leonard O. Ohenhen (D^{a,b,*}, Manoochehr Shirzaei (D^{a,b,c} and Patrick L. Barnard (D^a

- 1.2 to 14 million people and >50% of infrastructures in major cities are exposed to subsidence rates between 1 and 2 mm per year

- The highest subsidence rates impacting the largest percent of land were found in coastal VA

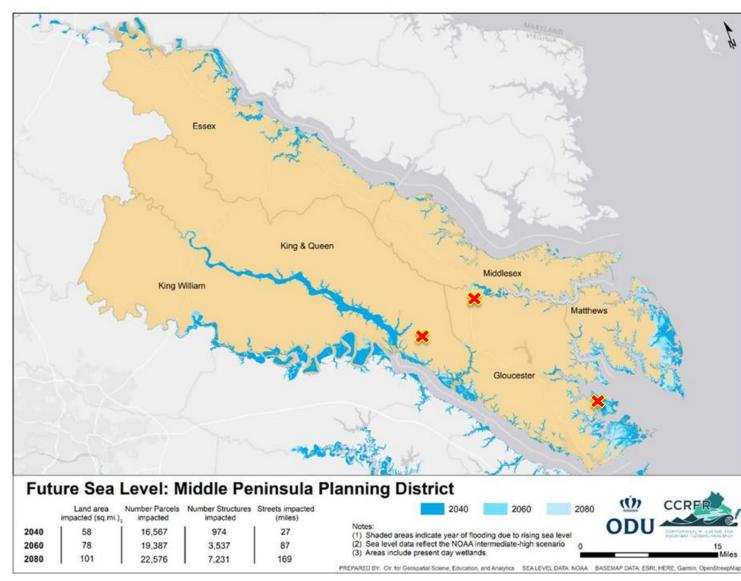



railinue

Virginia Relative Sea-Level Rise

- Land subsidence >50% of relative sea-level rise

- Aquifer-system compaction >50% of the land subsidence



8

Source: USGS, Land Subsidence and Relative Sea-Level Rise in the Southern Chesapeake Bay Region. 2013.

Rural Coastal Virginia – Middle Peninsula

Source: CCRFR, Future Sea Level and Recurrent Flooding Risk for Coastal Virginia. 2020.

- 104,000 onsite sewage systems
- Significant inundation by future sea level
- Nearly the entire region will be < 3' above sea level
- ~20,000 systems predicted to fail by 2040
- Upkeep and maintenance of alternative systems is inefficient and cost prohibitive due to conditions

PROJECT OVERVIEW

Virginia Coastal Resiliency Adaptation Challenge

Septic Systems:

- Technology to replace failing systems
- Affordable CapEx
- Above-ground systems
- Transportable infrastructure
- Bonus: Can recycle some or all of the discharge water for home reuse

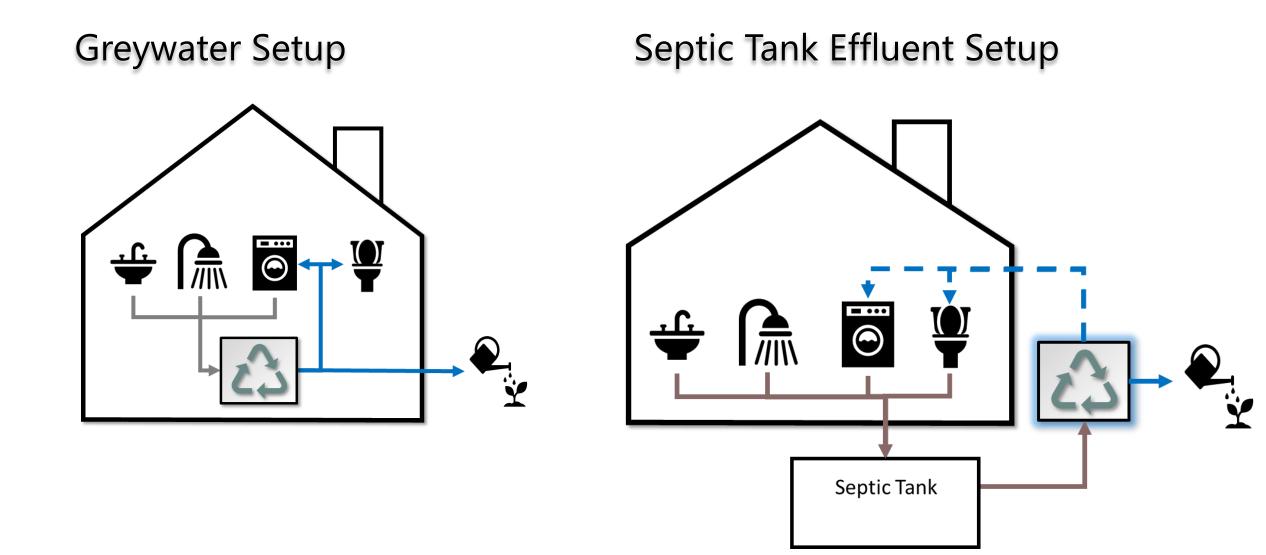
Water Supply:

- Water reuse systems
- Solutions must be sustainable, affordable, and permittable under current regulations

Two Challenges, Shared Solution

Improved onsite wastewater treatment

Protect public and environmental health


Flood resiliency

Onsite non-potable water reuse

Reduce potable water consumption by reusing water for irrigation, HVAC, laundry, etc.

Water supply resiliency

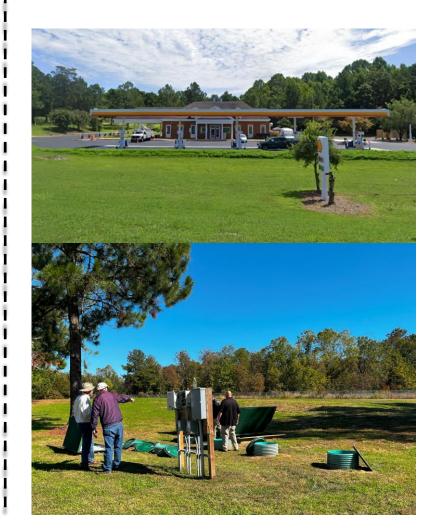
One Solution » **Two Applications**

Pilot Sites

Residential:

- 1970s home
- Conventional septic system

Commercial:

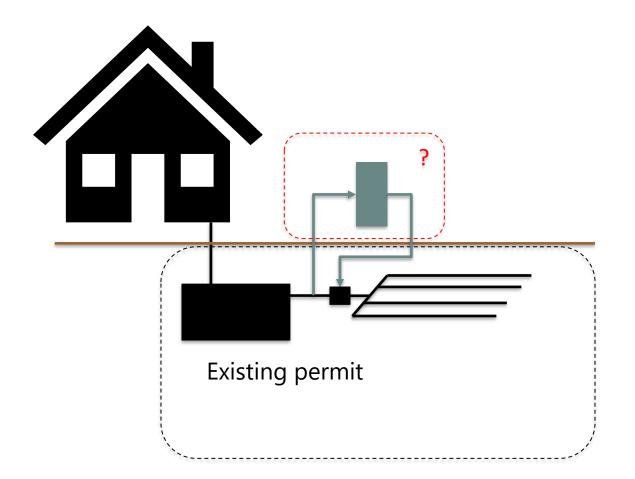

- Telework building
- Complete Dec. '24
- Conventional septic system

Commercial (Interim):

- Convenience store
- Advanced Treatment System

IMPLEMENTATION CHALLENGES

Support From:

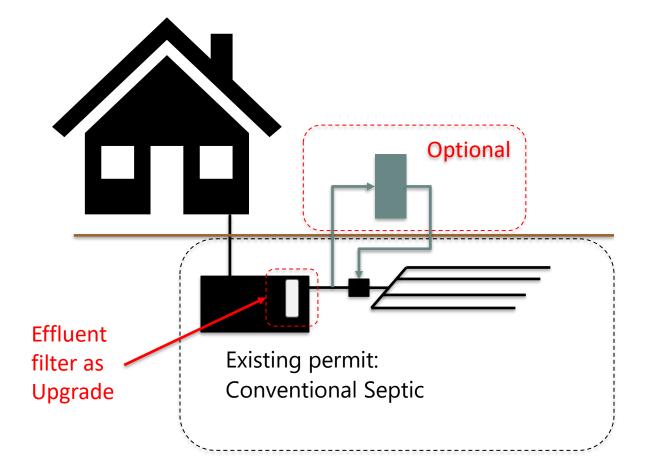

VIRGINIA DEPARTMENT OF HEALTH

To protect the health and promote the well-being of all people in Virginia.

Permitting Approach – Demonstration Purposes only

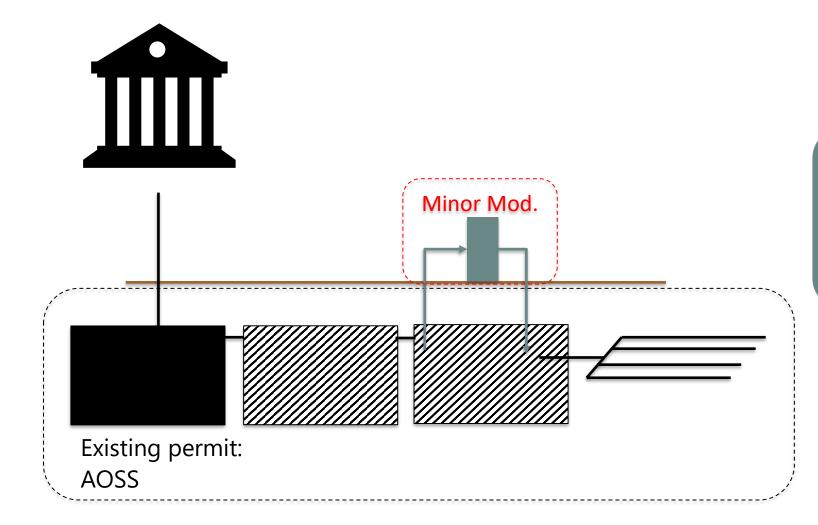
Goals:

- Implement Pilot System into existing, permitted system
 - Intercept wastewater
 - Pass through treatment unit
 - Send effluent back into existing system flow path
- Sampling & analysis at each step
- <u>Do no harm</u>

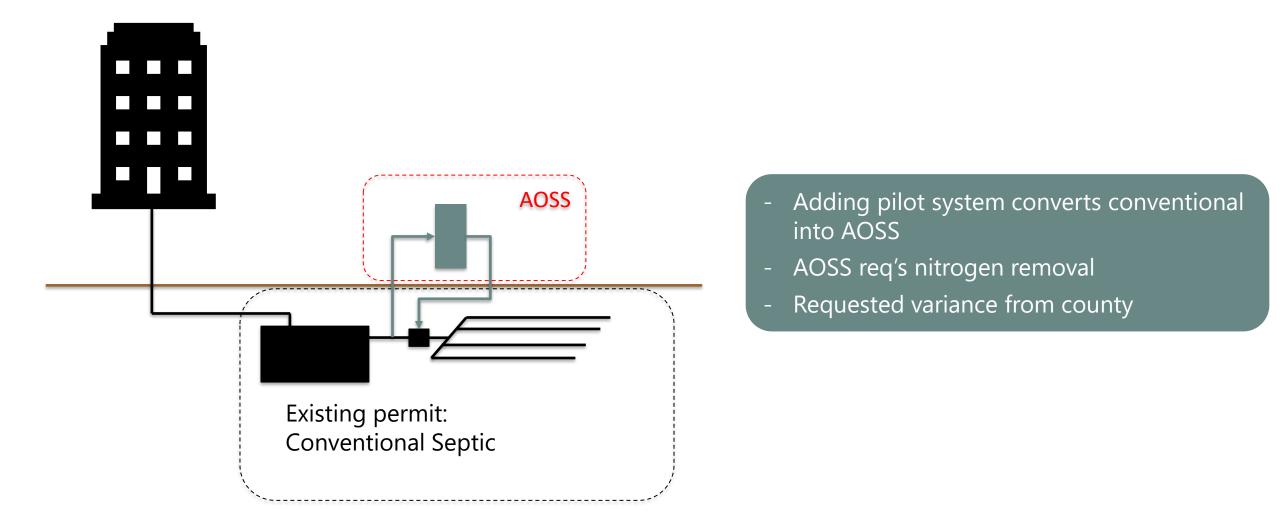

VA Permit Route	Requirements
Experimental	 Prior validation from 3rd party testing Funds for backup/replacement system Can replace failed conventional system where current AOSSs are not possible

VA Permit Route	Requirements
Experimental	 Prior validation from 3rd party testing Funds for backup/replacement system Can replace failed conventional system where current AOSSs are not possible
Voluntary Upgrade	 Existing system must be inspected and in compliance Once installed, the upgrade cannot be removed without another permit

VA Permit Route	Requirements
Experimental	 Prior validation from 3rd party testing Funds for backup/replacement system Can replace failed conventional system where current AOSSs are not possible
Voluntary Upgrade	 Existing system must be inspected and in compliance Once installed, the upgrade cannot be removed without another permit
Minor Modification	- Does not result in an increase in treatment level


VA Permit Route	Requirements			
Experimental	 Prior validation from 3rd party testing Funds for backup/replacement system Can replace failed conventional system where current AOSSs are not possible 			
Voluntary Upgrade	 Existing system must be inspected and in compliance Once installed, the upgrade cannot be removed without another permit 			
Minor Modification	- Does not result in an increase in treatment level			
Convert to AOSS	 Generally approved TL-2 or TL-3 system Engineer-specified Chesapeake Bay Watershed nutrient reduction req's 			

Permitting Pathways Used – Voluntary Upgrade


Permit application centered around Effluent Filter, which may or may not include pilot system

Permitting Pathways Used – AOSS amend

- Amended existing AOSS permit to include pilot system
- Included letter from AOSS manufacturer stating no negative impacts from pilot

Permitting Pathways Used – AOSS + Variance

Other Challenges: Flood-Proofing

- Local FEMA req't:
 - All electrical components must be 3' above the base flood elevation

Road to home at high tide:

PROJECT STATUS

Support From:

Residential Pilot Site

Operational since March '24 Septic tank effluent treatment

Interim Commercial Pilot Site

Installed Sep '24

- As of Oct 1, awaiting operation permit
- Testing with AOSS effluent
- Test until final Commercial Site is ready

Commercial Pilot Site

Dec '24 Move-in Operate for > 6 months

- 3 months greywater
- 3 months septic tank effluent

		NSF 350	Direct Discharge	Reclaimed	
	Residential	Non-potable	Q10 Stream or Dry	Water	AOSS
	Avg. Results	Reuse	Ditch	(Level 1)	TL-3
BOD (mg/L)	9	10	10	10	10
TSS (mg/L)	0	10	10	10	10
Turbidity (NTU)	1.97	5	-	2	
E. coli (MPN/100 mL)	-	14	126	11	
рН	8.4	6-9	6-9	6-9	
Chlorine (mg/L)	1.0	0.5	-	1	

	Residential	NSF 350 Non-potable	Direct Discharge Q10 Stream or Dry	Reclaimed Water	AOSS
	Avg. Results	Reuse	Ditch	(Level 1)	TL-3
BOD (mg/L)	9	10	10	10	10
TSS (mg/L)	0	10	10	10	10
Turbidity (NTU)	1.97	5	-	2	
E. coli (MPN/100 mL)	-	14	126	11	
рН	8.4	6-9	6-9	6-9	
Chlorine (mg/L)	1.0	0.5	-	1	
Nitrogen (% rem.)	39%	-	50%	-	50%
Other			No discharge in shellfish water	Continuous monitoring for tubidity, chlorine Weekly BOD/TSS sampling 3x/week <i>E. coli</i> sampling	

- Update design based on findings (figure below)
- Incorporate nitrogen solutions
- 3rd party certifications (e.g., NSF 350, NSF 245)

 More technical solutions are needed to improve climate resiliency of distributed water & wastewater

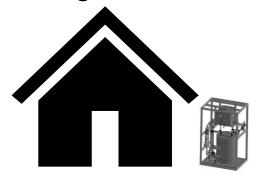
Create pathways to pilot new technologies safely and efficiently

• New or updated regulations for onsite non-potable reuse

THANK YOU!

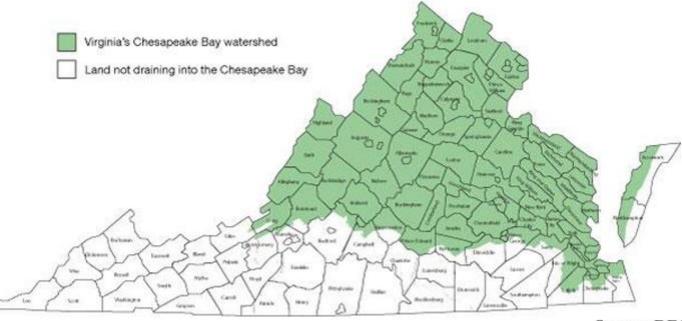

Aaron Forbis-Stokes, Ph.D. aaron@triangle-environmental.com

QUESTIONS?


APPENDIX SLIDES

Potential Impacts

New commercial building


Existing home retrofit

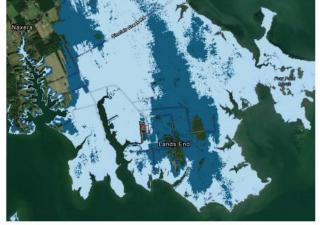
	Comme	rcial	Residential		
Future Impacts:	Septic Tank Effluent	Greywater	Septic Tank Effluent	Greywater	
Drainfield reduction	100%	60-70%	100%	60-70%	
Non-potable reuse	HVAC, Irrigation	HVAC, Irrigation, Toilet flushing	Irrigation	Irrigation, Toilet flushing, Laundry	
Potable water use reduction	Up to 50%	Up to 90%	Up to 70%	Up to 85%	

35 NOTE: Reuse is a future goal. These sites are for demonstration & data collection only.

Other Challenges: Nutrient removal

Require a 50% reduction of TN compared to a conventional gravity drainfield system:

- NSF 245
- TN < 20 mg/L prior to soil dispersal
- < 4.5 lb N per person per year at project boundary


Source: DEQ

Lands End High Tides

